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ABSTRACT 
A full description of a new novel method proposed for Automatic Programming is brought 

forward in this work. Controlled Gene-Accumulation programming is a method that is purely 
inspired by concepts of nature. Research will show that this method provide a better overall 
performance especially due to the isolation of terminals from functions. Chromosome flip folding is 
a new crossover operator introduced in this work; it will prove to be efficient in introducing new 
genetic material.  

A new stage is added to the evolutionary process along with mutation, transposition and 
recombination, the stage is inspired from natural inoculation with two new operators: vaccines and 
serums, these two operators proved to have a huge effect on evolving systems by ensuring the death 
of weak individuals and survival of the fittest with the addition of enforced immunity of the system. 

Investigations of this approach proved its superiority over other methods in various aspects, it 
is in a way controlled to adapt to rule complexity and the production of minimal chromosomal 
encodings as the chromosomes all have varying lengths genes. It has a much faster execution time 
compared to the well known Gene Expression Programming method.   

 تحت السيطرة البرمجة بتراكم الجينات المقاد
  الاستاذ الدكتور نضال حسين الاسدي            نجلاء اكرم الساعاتي. د

 كلية علوم الحاسبات والرياضيات/ قسم هندسة البرمجيات 
 

 الخلاصة
هي  طر عليهالمسيالبرمجة بتراكم الجينات . هذا البحث وصف كامل لنموذج مبتكر جديد مقترح للبرمجة الالية يقدم

طريقة مستوحاة من حقائق الطبيعة بشكل كامل وسيبين البحث ان هذه الطريقة توفر اداء كلي افضل وخاصة بسبب عزل 

ت كفاءة اثبذي وال) Chromosome flip-folding(تم ايضا تقديم معامل جديد يدعى . عن الدوال) terminals(الطرفيات 

  .بتقديم مادة جينية جديدة

. وعمليات المزجم مرحلة جديدة للعملية التطورية بالاضافة الى الطفرات الوراثية ، العمليات التنظيمية تم ايضا تقدي

اللقاح والمصل، حيث اثبت المعاملان اثرهما الكبير : مليناوتتضمن معمن فكرة اللقاح الطبيعي استوحيت فكرة هذه المرحلة 

توفير المناعة الى الافراد الضعيفة وبقاء الافضل هذا بالاضافة على النظم الخاضعة للتطور وذلك من خلال ضمان موت 

  .المعززة للنظام

عدة نواحي، وهو مقاد كل الطرق الاخرى من  علىعلى هذا النموذج الى اثبات تفوقه  تمتادت الاستقصاءات التي 

رميز وذلك بسبب اختلاف اطوال ويؤدي الى انتاج كروموسومات ذات اقل قدر ممكن من التمع تعقيد القوانين  بشكل يتلائم

  .)Gene Expression Programming( تنفيذ عالية مقارنة بالطريقة المعروفة عللنموذج سر. الجينات في كل كروموسوم
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  1. Introduction 
Controlled Gene-Accumulation Programming (CGAP)[1], is a new genotype/ 

phenotype system that uses the idea of evolution to generate computer programs to 
solve real-world problems. This method is inspired by natural chromosomes and is the 
closest to represent them among most of the proposed Linear GP variants [2, 4, 7, 8]. 
This method employs a multi-varying gene system where rules are represented by 
expression trees encoded as double-stranded linear entities in a close similitude to 
natural DNA strands. These multi-varying gene chromosomes have the ability to 
represent any expression tree whatever its complexity. 

CGAP is a genetic system, that employs populations of individuals, it applies 
selection schemes to choose individuals according to their fitness measures, 
introduces genetic variations by one or more of the available genetic operators to 
achieve genetic diversity in evolving populations, and it utilizes a fitness measure to 
evaluate these individuals. 

The elementary difference among GAs, GP and CGAP algorithms exist in the 
encoding of individuals: GAs encode the individuals in linear strings of fixed length 
called chromosomes; in GP they are non-linear entities of different sizes and shapes 
called parse trees; and in CGAP they are represented as fixed-length linear strings 
called genomes or chromosomes and are then expressed as non-linear entities of 
different sizes and shapes. 
 
2. CGAP Algorithm 

Evolution in CGAP is achieved through a number of successive generations, it 
begins with the creation of individuals in the first population by filling up the two-
stranded genes of each chromosome in the population with randomly generated 
functions and terminals respectively taken from the predefined sets of functions and 
terminals. Then each chromosome is expressed into its corresponding phenotype 
structure. Afterwards, the selection process is carried out based on Roulette wheel 
selection scheme coupled with elitism, where individuals are selected to go through 
mutation, transposition and recombination according to their fitness to form a new 
generation which, in turns, undergoes the same process. The succession is repeated 
until the termination criterion is met. Figure (1) gives the CGAP flowchart. 

The newly added stage of inoculation is applied only twice according to 
predefined probabilities. The vaccine inoculation is applied in the early stages of 
evolution (usually the second generation), while the serum inoculation is applied at 
the last stages, unlike other operators, which are probabilistically applied in all 
generations. After reproduction no editing, by any means, of the resulting individual 
is necessary before fitness evaluation, as all the resulting members of the population 
are correctly synthesized programs in all cases, this is ensured by the nature 
functionality of the genetic operators used. 
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Figure (1) Flowchart of Controlled Gene-Accumulation Algorithm 
 

3. Model Description 
3.1. Inspiration of Nature 

Returning back to nature, a chromosome is, minimally, a very long, continuous 
piece of DNA that contains many genes, other intervening nucleotide sequences 
chromosomes are genes carriers. When two genes are found on the same chromosome 
they are said to be linked. At the formation of gametes, when the chromosomes first 
line up at the mid-point of the spindle fibers, genes linked along the length of each 
chromosome are prone to becoming dispatched.[10] In this model, the chromosomal 
structure is a true simulation of nature. chromosomes are made up of several genes of 
different random lengths, the structure corresponds to that of the DNA in being 
composed of two strands that bind together and become one whole individual. Bonds 
used in the binding process of the strands are one-to-many relational bonds that 
depend entirely on the type of function to be linked. 

Randomly Generate Initial Population and set G=1

Express chromosome and execute Each Program and Evaluate Fitness 
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Clone Best Program 
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Reordering 
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3.2. Chromosomal Structure 
In this method, the chromosome consists of a linear symbolic string of fixed total 

length, which is composed of one or more variable length genes that code for trees of 
different sizes and shapes. Each gene is composed of two strands that must bind 
together in order for the gene to be meaningful. The first strand contains symbols 
encoding the functions that perform the desired operations; it is called the F-Strand. 
The other strand contains symbols that encode the terminals required as operands to 
functions, and is called the T-Strand. Figure (2-a) gives the chromosomal structure 
and strands binding process, Figure (2-b) illustrates the tree expressing of genes, 
while Figure (2-c) depict the linking process of expression trees (ETs). 

. 
 

a) F-Strand F1 F2 F3  F1 F2 F3 F4  F1 F2 F3 ……   

    
 T-Strand T1 T2 T3 T4  T1 T2 T3 T4 T5  T1 T2 T3 T4 ……    

 Gene 0  Gene 1  Gene 2  Gene N

 b) 
 
 
 
 
 
 

Tree 0 Tree 1   Tree 2          Tree N 

c) 
 

 
 
 
 
 
 
 
 

Figure (2) a) Chromosomes Structural Representation 
b) Corresponding Tree Structures       c) Tree Structures after linking 

 
The Isolation of functions from terminals is very necessary to increase the 

efficiency and reliability in implementation and performance as: 
1. It facilitates the binding process between functions and terminals. 
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2. It gives more efficiency in applying genetic operators with fewer constraints 
forced in their implementation. 

3. No terminal can appear in the F-strand and stop the expansion of the open end of 
the corresponding expression tree. 

4. Excluding terminals from the F-Strands completely eliminates the possibility of 
obtaining flat genes. 
In F-Strands, the number of genes and their lengths is randomly chosen, forming 

a random length of F-Strand (LFS). The number of genes in the T-Strand is fixed 
accordingly to the F-strand, but the lengths of genes are not, they are instead 
calculated to adapt to as many as needed by the related function gene, resulting in a 
suitable total length of the T-Strand (LTS) that can bind correctly to the F-Strand and 
adapt to changes caused by operators, resulting always in correctly synthesized 
programs. Lengths are calculated using the following rules: 

LTSi = LFSi . (MaxArg -1) +1    ……………………………...………..(1) 
LTS =Σi  LTSi ,     for 0 < i < N, ….………...………………….…..…..(2) 

Where N is the number of genes in each chromosome and MaxArg is the maximum 
number of arguments taken by a function in the function set. Thus, functions can 
appear in the F-Strand and takes as much terminals as needed. At the extreme case, a 
gene can have an F-strand of functions all requiring MaxArg arguments, and the 
whole length of the T-Strand is used. All chromosomes have the same number of 
genes all of the same length. Choosing the number of genes in each chromosome and 
their lengths is done randomly and is studied thoroughly in section (5.1) 
 
3.3. Controlling the Gene-Accumulation Process 

The main aspect of this method involves the issue of unrestricted, end-shifting 
utilization of chromosome length, as this is largely related to the rule complexity. This 
approach allows problem complexity to control the required length at evaluation time 
(fitness calculation), making use of just as much as needed from the chromosome. In 
addition, the accumulation impact assures that the components of the acquired length 
of the individual are actually used in the calculation. 

At evaluation, as in nature, genes become dispatched. Every gene is taken in part 
and evaluated as an individual tree, starting with the first element in the F-Strand. 
Each time a branch is added, an evaluation procedure is invoked to compute the 
output value of the rule encoded in that tree and compare it with the desired output 
depending on the fitness cases chosen for training (Figure (3)). In this case there are 
two possibilities: 

1. If no match is found, another branch is added to that tree and the process is 
repeated until a match is found or the end of the first gene is encountered, forming 
the first phenotype sub tree that is ready to be linked to the next one in the 
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chromosome. So each gene in the chromosome is added in parts to the accumulated 
output value, which is controlled by continuous comparison with the desired 
output. 

2. If a match is found, then a virtual end mark is placed to indicate the stopping end 
point of the chromosome. When a virtual end is found for the first fitness case, the 
process of tree construction ends, and the learning process begins. The newly 
formed rule encoded in the constructed tree is re-evaluated using the remaining 
fitness case in an attempt to find the fitness measure of that rule. 

The total output values specified by the fitness cases must match the result 
stopping at the same point in the chromosome in order to state that the rule is trained 
and capable of solving any other new case offered. 

 
For all chromosomes in the population do 

For all fitness cases in the training set do 
{ 

Flag=true 
For all genes in the chromosome do 

{ 
Repeat 

Add next branch to sub-tree 
Link with previously constructed tree (nil in the first gene) 
Evaluate tree 
If a match is found with the fitness case then 

Save stopping point 
If no match with previous stopping point then Flag=false 
Exit repeat 

Until end of gene  
If Flag=true assign fitness according to obtained value 
Else Set Fitness=0 and Stop evaluation 
} 

Update total chromosome fitness with this fitness case 
} 

Figure (3) Algorithm of Evaluation Process for CGAP 
 
3.4. Genetic Operators 

According to the fitness measure and the luck of the roulette wheel, individuals 
are selected to reproduce with modification. In CGAP, except for mutation, each 
operator is not allowed to modify a chromosome more than once. In addition, as in 
GEP, a chromosome could be chosen by one or several operators to be modified. 
Thus, the modifications of several genetic operators accumulate during reproduction, 
producing offspring very different from the parents. In CGAP, four stages of 
operators are introduced: 
 
1- Mutations 

Mutations can freely occur anywhere in the two-stranded chromosome, changing F-
Strand’s elements to any other one defined in the function set, and T-Strand’s 
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element into any of the terminals in the terminal set. Changes will not affect the 
correctness of the resulting programs. 

 
2- Reordering 

All these operators, except for Transposition, are permutation-specific, as they are 
guaranteed to keep all the elements but in a different reordering. 

a) Transposition: is similar to IS and RIS transportation of GEP [5]. But here, a 
random sequence is chosen and is transposed to any randomly specified location 
in the selected chromosome. 

b) Inversion: a random sequence is chosen from the chromosome’s length and is 
inverted in its place, thus reordering the genes of that sequence. 

c) Wrap-around Rotation: a random sequence is chosen from the chromosome’s 
length and is rotated in its place. 

d) Flip-Folding: the selected chromosome is divided at a predefined point into two 
different length parts, which are then flipped to be reunited again forming a 
totally new chromosome. 

e) Increment/Decrement Effect: the contents of the chromosome are incremented 
or decremented by a constant creating a new chromosome. 

 
3- Recombination 
a) One point Recombination: the most effective operator. A point is randomly 

chosen in the chromosome sequence at which the contents of the two parents are 
swapped forming two new different children. 

b) Alternating Multi-point Recombination: instead of using two-point crossover, a 
multi-point operator is invoked. It is implemented by alternately crossing over 
randomly chosen regions of the two selected parents. The number of points in the 
multi-point operator is randomly chosen and the chromosome is divided 
accordingly. 

 
4- Inoculation: 

This new stage involves introducing inoculation among individuals using both 
serums and vaccines in order to provide immunity in evolving individuals. 

c)  Vaccines: any preparation of a virus introduced into an individual to immunize it 
against an infection. This involves spreading a virus into the population at a very 
early stage of evolution, not in the first random population but in the second (first 
evolved population), and the system tries to settle the effect throughout the 
remaining generations. If individuals heal, the population grows to be immune, 
and if they die, the population becomes free of weak individuals. 

d) Serums: a sequence taken from an immunized individual and used for the 
inoculation. At late evolution stages and after the population have reached a full-
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growth point and is in need of revival, the serum inoculation is used to revive such 
populations with vital serums. 

 
3.5. Fitness Calculation 

The most important aspect in any GP or linear GP variant method is the choice 
of the fitness measure for evaluating how good a given program is at solving the 
problem at hand. The objective must be correctly stated for the system to evolve 
towards discovering good solutions. 

In this work, fitness functions are set accordingly to those used in GEP [4]. To 
evaluate the performance, GEP uses the average number of fitness-functions 
evaluations (Fz) needed to find a correct program with a certain probability (z). Given 
the success rate or the probability of success (Ps) and the number of fitness cases used 
in the training process (C), the number of independent runs (Rz) required to find a 
correct solution by generation G with a probability of z=0.99 is calculated by: [4]  

Rz= log (1-z) / log (1-Ps),    and  Ps≠1……………………………….…....(3) 
Fz = Generations* population_size* C* Rz .………………….………..…(4) 

 
4. Application to real-world problems 

This approach is evaluated through its application to some of the widely 
referenced problems in GP and its variants. Results are compared to GEP being the 
most successful method of the proposed GP variants. 

Tests include: Symbolic Regression, Sequence Induction, and the 11-multiplexer 
problems. Some of the tests use the same parameter setting of those used by GEP in 
order to draw some realistic conclusions. All tests carried out here use notations of 
success rate or probability of success (Ps) evaluated over 100 identical run. Table (1) 
shows the probabilities of operators for the three tests carried out in this work.  

 
Table (1) Probabilities of Operators for Test1, 2 and 3 

Operator Test1 Test2 Test3 
 Mutation 0.06 0.1 0.1 
Transposition 0.1 0.1 0.1 
Inverse 0.1 0.15 0.1 
Wrap-Around Rotate 0.3 0.35 0.1 
One point recombination 0.1 0.1 0.1 
Alternate Multi-point recombination 0.35 0.35 0.7 
Serum 0.35 0.3  
Vaccine 0.1 0.15  

 
4.1. Symbolic regression 

The symbolic regression problem can be stated as finding a function in a 
symbolic form that fits a given finite sample of data [6]. It is a valuable tool for the 
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analysis of experimental data where the specification of the strategic function used is 
often difficult, and may even vary over time.[3] 

As for fitness calculation, the objective here is to find an expression that 
performs well for all fitness cases within a certain error of the correct value. For some 
mathematical applications it is useful to use small relative or absolute errors in order 
to discover a very good solution. Mathematically, this is expressed by the following 
equation: 

( )∑
=

−−=
iC

j
jjii TCMf

1
),( ……………………………………….…………( 5 )  

Where M is the range of selection, C(i,j) the value returned by chromosome i for 
fitness case j (out of Ct fitness cases) and Tj is the target value for fitness case j. If, for 
all j, |C(i,j) - Tj| (the precision) less or equal to 0.01, then the precision is equal to 
zero, and fi = fmax = Ct. M. For this problem, an M = 100 will be used, thus fmax = 
1000. The benefit of this kind of fitness function is that the system can find optimal 
solutions for itself 
 
Test1: 

The first test includes applying CGAP to a symbolic regression problem; the aim 
is to evolve the function given in following Eq.: 

Y = a4 + a3 + a2 + a  ………………………………….…….…………….(6) 
 

 
Table (2) Fitness Cases for Test1 

In 2.81 6 7.043 8 10 11.38 12 14 15 20 
Out 95.2425 1554 2866.5485 4680 11110 18386.0340 22620 41370 54240 168420

 
Probabilities of operators are given in Table (1). Fitness cases in Table (2) and 

parameter settings in Table (3). Being an uncomplicated function only one-gene 
chromosome was enough to fit the given fitness cases. 

 
Table (3) Parameter Settings for Test1 with 100 run 

Setting CGAP GEP 
Generations 46 50 
Population 30 30 
Chromosome Length 19 39 
Genes 1 (F-Strand=9) 3 (h=6) 
Function Set {+,-,*,/} {+,-,*,/} 
Terminal Set {a} {a} 
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CGAP Solution: *+*+*+  /** found in Generation 4 

 aaaaaaa  aaa 

Evaluation of the solution: 
a*a= a2 
+a = a2+a 
*a = a3+a2 
+a = a3+a2+a  
*a = a4+a3 +a2 
+a = a4+a3 +a2+a 
PS = 1.00, Rz= 1, Fz= 13800.0000  
GEP  solution is **-*a+aaaaaaa ++**a*aaaaaaa *+-a/aaaaaaaa 

 
 

 
 
 
    a4 + a3+a2+a +   0 = a4+a3+a2+a 

 
It is clear that the 3rd gene is of a zero value to the chromosome. These results 

indicate that CGAP surpasses GEP in many aspects. Maximum chromosomal length 
is significantly shorter; in addition, resulting rules are shorter and more compact. 
Probability of success is improved considerably with less required execution time; 
Table (8) gives time comparison details. 
 
4.2. Sequence Induction 

The problem of sequence induction is a special case of symbolic regression 
where the domain of the independent variable consists of the non-negative integers. 
Yet, the sequence chosen is more complicated than that used in symbolic regression, 
as different coefficients are used.[5] 

The problem involves finding a mathematical expression to calculate the value of 
the sequence at a given step [9]. In the sequence 1, 15, 129, 547, 1593, 3711, 7465, 
13539, 22737, 35983, 54321, …., the nth term is: 

12345 234 ++++= nnnn aaaaN ,…………………………….................…..(7) 

Where an consists of the non-negative integers 0, 1, 2, 3, ..., n . This sequence 
was chosen because it can be exactly solved and therefore can provide an accurate 
measure of performance in terms of success rate. 

Fitness Measure for sequence induction is similar to that of Symbolic regression 
given in Eq. (5) for assigning fitness measure to individuals. 
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Test2: 
The second test is the application of the CGAP method in sequence induction, 

the function to be evolved is: 

Y = 5a4 + 4a3 +3 a2 + 2a+1 …………………………............……………. (8) 

The probabilities of operators are given in Table (1), fitness cases in table (4), 
and parameter settings in Table (5). Gene lengths are assigned using the concave 
shape as will be discussed in section 5 along with other shapes in an analysis to 
indicate the efficiency of utilizing this shape. 

 
Table (4) Fitness Cases for Test2 

In 1 2 3 4 5 6 7 8 9 10 
Out 15 129 547 1593 3711 7465 13539 22737 35983 54321 

 

Table (5) Parameter Settings for Test2 with 100 run 
Setting CGAP GEP 
Generation 100 100 
Population 60 60 
Chromosomal Length 81 91 
Genes 7 (F-Strand={5,6,7,6,6,4,3}) 7 (h=6) 
Function Set {+,-,*,/} {+,-,*,/} 
Terminal Set {a} {a} 

 
CGAP Solution found in generation 12 with length 50, 4 genes used of maximum 85 

length and 7 genes chromosomes with Linking function = ‘+’ 
Ps=0.79, Rz= 2.9508,  Fz= 177048.3906  

 
++***  +*+*+*  ++*++*+  *+*//    /  *+*/*+  +/+-  **-
aaaaaa  aaaaaaa  aaaaaaaa  aaaaaa  a       
(3a4)  (2a4+a3+a2)  (3a3+2a2+a)  (a+1)       

=5a4+4a3+3a2+2a+1 
 
Another CGAP solution of length 70 using 6 genes and Linking by ‘+’ 

++***  +*+**+  --+//+*  **-++/  /*++**   *+      /*  +++
aaaaaa  aaaaaaa  aaaaaaaa  aaaaaaa  aaaaaaa   aaa     aa  … 
(3a4)  (2a4+a3+a)  (a2)  (a2+1)  (3a3)  (a2+a)   

=5a4+4a3+3a2+2a+1 
 
GEP solution found in generation 32 with length=73 and 7 genes used of the maximum 

length=91 and 7 genes chromosomes, Linking function = ‘+’ 
Ps= 0.41, Rz= 8.7280 Fz= 523679.0625  

 
**++—aaaaaaa *+/+a*aaaaaaa *+*+*+aaaaaaa *-***+aaaaaaa *a/+a-aaaaaaa -+-/**aaaaaaa **+a*+aaaaaaa
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Again in this test, results of CGAP exceed GEP in utilization of chromosomal 
length, resulting rule size, probability of success, and in execution time. Table (8) 
gives comparisons in terms of execution time. 
 
4.3. The 11-Multiplexer Problem 

The goal is to evolve a rule capable of translating an input of 11 ordered binary 
bits into the appropriated output where the first 3 bits refer to an address of 0 to 8 and 
the remaining 8 bits give the input to the Multiplexer. The value of the Boolean 
multiplexer function is 0 or 1 of the particular data bit that is singled out by the 
address bits of the multiplexer. For example, if the three-address bits a2a1a0 are 110, 
the multiplexer singles out data bit number 6 (d6) to be the output of the multiplexer 
(Figure (4)). 

 
Figure (4) The 11-Multiplexer Interface 

The set of fitness cases must be representative of the problem as a whole. There 
are 211 = 2,048 possible combinations of the 11 arguments a0a1a2d0d1d2d3d4d5d6d7 
along with the associated correct value of the 11-multiplexer function. For this 
particular problem, sampling is used as the fitness cases for evaluating fitness. The 
fitness cases were assembled by address, for each address a sub-set of 20 random 
combinations was used each generation. Thus, a total of 160 random fitness cases 
were used each generation. In this case, the fitness of a rule is the number of fitness 
cases for which the Boolean value returned is correct, plus a bonus of 180 fitness 
points for each sub-set of combinations solved correctly as a whole. Hence, a total of 
200 fitness points was attributed for each correctly decoded address, with 1600 as the 
maximum fitness. The idea is to decode one address at a time, as the individuals learn 
to decode first one address, then another, until the last one. 
 
Test3: 

This problem is permutation-specific, thus all the elements in the terminal set 
have to be present in the resulting rule in order for it to function correctly, so the 
operators used in this test have to be permutation-specific. In addition, a one-point 
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recombination operator is used in a monitored manner as recombining two parents 
can result in two invalid offspring’s that repeat or miss a certain element in the rule. 

Fitness cases are randomly generated from the 2048 total possible combinations 
of the 11 components in a similar manner to that used by GEP. Probabilities of 
operators are given in Table (1) and the parameter settings in Table (6). In this test, a 
three-gene chromosome is used; having one element in the function set does not 
require an F-Strand, so a virtual one is linked with the T-Strand to form the 
chromosome. As a result, many different length solutions were found, listed here are 
two: one of length 23 with a tree of 34 nodes, and a shorter one of length 21 with a 
tree of 31 nodes only. 

 
Table (6) Parameter Settings for Test3 with 100 run 

Parameter CGAP GEP 
Generation 300 400 
Population 250 250 
Length 21 and 23 27 
Genes 3 27 
Function Set {IF} {} 
Terminal Set {a,b,c,0,1,….,7} {a,b,c,0,1,….,7} 

 

Solution1: 721bc  ab767bcc5ab73  b2a40          Solution2: 721bc 677a55cab73 b2a40 
With 3 gene F-Strand length =10 {2,6,2}        With 3 gene F-Strand length = 9 {2,5,2} 
Ps= 0.43, Rz= 8.1925, Fz= 98310232.0         Ps= 0.41, Rz= 8.7280, Fz= 104735816.0 

 
    
    
     

 
 
 
 
 
 
 
 
 
 
 

 

Where a,b,c are the control input  
 and 0,…,7 are the data register input

IF 

IF b c

IF 

c 5IF 

a b
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7 3IF
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6 7IF 
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b cIF 
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4 0IF 
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GEP’s Solution: No function was used to generate chromosomes; the sub-ETs were 
linked by IF. The characters are linked 3 by 3, forming an ET with depth 4, composed of 
40 nodes, the first 13 nodes are IFs, and the remaining are the chromosome characters. 
 

365 2bb 5bb ba4 c87 c43 bcc a62 a51 
Ps= 0.32, Rz= 11.9409, Fz= 191054944.0 

 

 
 
 
 
 
 

 
 
The examination performed in the course of this test showed that results obtained 

by using CGAP technique outperform GEP in chromosome length, output rule size, 
probability of success, and in execution time, as indicated in Table (8). 
 
5. Comparisons between CGAP and GEP: 
5.1. Chromosome Size and Gene length: 

In GEP, the chromosome length is increased gradually until the suitable length is 
found, if no acceptable success rate is gained, then the length for the head is fixed and 
the number of genes is increased. With the help of the linking function, more 
compound tree structures are constructed. Because GEP uses fixed length genes, and a 
fixed total chromosome length, i.e., all genes are used in finding the fitness of an 
individual, the choice of gene length and number of genes in the chromosome is very 
sensitive and can dangerously influence the evolutionary process. 

 

 
 

Figure (5) Effect of increasing Chromosome Length with Success rates in GEP 
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Figure (6) Effect of Increasing Chromosome Length with Success Rates in CGAP 

 
The relationship between success rate and chromosomal length is therefore very 

complicated. Success rates continue to increase with the length to a certain point, after 
that any further increase will only decrease success rates as stated in Figure (5) [4, 7]. 
In CGAP the situation is considerably different; having genes of different lengths 
adds more flexibility. In addition, the open varying end of the chromosome reduces 
the impact of total length on success rates. In this section, chromosome length is 
investigated and compared to GEP. The investigation was done using the environment 
of single-gene chromosome population stated in Test1 (which is the same test used in 
Figure (5)); length was varied from 0 to 100 with a population of 46 individual. 
Results are given in Figure (6). Even with very long chromosomes (length of 100) 
success rates are still very close to that obtained with short reasonable length, and are 
very high relatively to GEP. 
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Figure (7) Relationship between Chromosomal Shapes and Success Rates 
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As for multi-gene chromosome populations, Sequence Induction with a 

population of 60 individuals was used to find the finest possible layout or shape for 
assigning lengths to genes in the chromosomes. The number of genes is randomly 
chosen, and the lengths of genes should be around the average value obtained by 
dividing total chromosomal length by the number of genes, environmental settings are 
identical to those stated in Test2. Empirical testing shows that the best results can be 
obtained when assigning short-length genes at both ends and increasing length as 
proceeding towards the middle, giving the chromosome a Concave form. Different 
arrangements of this shape, like: {5,6,7,7,6,4,3} or {4,6,7,5,3}, provide a gradual 
increase in expression complexity, after reaching the chromosome center, the process 
is reversed to supply less complex terms at the end of final expressions. 

 
Figure (7) shows success rates of five different shapes for chromosome gene 

lengths, a total of 20 populations of the same size and environment as indicated in 
Test2 are used; total chromosome length is equal to 81 and is composed of 7 genes. 
Each of these 20 populations employs 60 individual of different arrangement for gene 
lengths all following the same shape of the total five chromosome shapes as follows: 
1. Convex shape decreasing gene lengths towards the middle.  
2. Concave shape increasing gene lengths towards the middle. 
3. Random shape of no particular style. it can randomly produce any shape. 
4. Incremented shape continually increasing gene lengths towards the end. 
5. Decremented shape continually decreasing gene lengths towards the end. 
 

Results indicate that Concave-shaped and Decremented-shaped chromosomes 
gave best success rates among all others. Table (7) ranks these shapes by their average 
success rates. 

 
Table (7) Ranking of Chromosome Shapes by Average Success Rates 

Rank Shape Average Success Rate 
1 Concave Shape 71.15
2 Decremented Shape 70.10 
3 Convex Shape 57.45 
4 Random Shape 57.05 
5 Incremented Shape 56.45 

 
5.2. Comparisons of Results by Execution Time 

For a complete test satisfaction, the computational time for executing runs in 
all tests was measured and compared with GEP. Each test is done using a Pentium 
(300MHz) processor. Table (8) shows the results in terms of success rates and 
execution time. 
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Table (8) Comparisons of Execution Time and Ps for 100 Run 
 CGAP GEP
 Time* Ps Time* Ps 
Test1 00:00:05:82 1.0 00:00:08:36 0.81 
Test2 00:01:46:66 0.79 00:03:11:24 0.41 
Test3 02:20:50:00 0.43 08:40:00:00 0.32 

Time is expressed as {Hour:Minute:Second:Hundredth of second} 
 
Due to the fact that successful runs end earlier than unsuccessful ones, the same 

test was carried out to measure the time used to complete one unsuccessful run. Test1 
was done using 200 generations in order to make the amount of time significant. 
Reasonably, the time shown in Table (9) is an average of a total of 20 evaluated runs.  

Test3 was executed on a faster computer of (2.40GHz) processor and the time 
measured was {00:27:23:41} 
 

Table (9) Comparisons of Execution Time for One Unsuccessful Run 
 CGAP Time GEP Time

Test1 00:00:00:21 00:00:00:43 
Test2 00:00:01:64 00:00:02:40 
Test3 00:01:10:22 00:05:27:12 

  
Table (10) Comparison between CGAP and GEP 

 CGAP GEP  
1. Controlled length of chromosome 

that adapts to rule complexity. 
Required length is found by tests relying on rule 
complexity. 

2. Easy evaluation of fitness function, 
results is just accumulated. 

Complicated, Karva language is used. 

3. Short efficient resulting programs. Fixed relatively large less efficient programs. 
4. Additional non-coding regions are 

kept at end and neglected in results 
Non-coding regions spread in the rule 

5. Genes of different lengths allow 
more flexibility. 

Use of multigenic families of equal length 
restricts the flexibility 

6. Use of inoculation in utilizing 
operators with its immunity feature 

Use of mutation, transposition and 
recombination only. No inoculation operator. 

7. No flat genes  Flat genes are very common 
8. No illegal operations. At linking, it 

may only occur with divisions. 
Illegal operations in genes are very common. 

9. Shorter execution time  Evaluating all genes requires longer execution 
time 

10. Requires less generations  Requires more generations 
11. Increasing chromosome length does 

not significantly affect success rates
Increasing chromosome length affect success 
rates considerably. 
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Adding inoculation as a new stage to genetic operators has imposed a massive 
influence on the behavior of the system. Both inoculations were inspired by nature 
and proved to be successful in applications. 

As a final conclusion on the comparisons made in this section, Table (10) 

reviews the important issues in which CGAP is found superior to GEP.  
 
6. Conclusions and further recommendations: 

Based on ideas motivated by nature, a new evolutionary method was proposed to 
solve real-world problems in an automated way. Controlled Gene Accumulation 
Programming was developed aiming to overcome malfunctioning phenomena of 
other existing methods. The newly developed method presented proved to be efficient 
and reliable in problem solving in terms of chromosome size, success rates and 
execution time.  

The new model was successfully applied to various benchmark problems: 
symbolic regression, sequence induction, and the 11-Multiplexer problem. It was 
investigated and compared to prove superiority over Gene expression Programming. 

In spite of the tremendous work that has been done in the field of Evolutionary 
Algorithms and Automatic programming, there are still many issues that might arise 
in the context of research relating to problem solving.  

As for further recommendations, CGAP being newly introduced can be used in 
different areas of applications to show its impact on finding satisfactory rules to 
complicated problems. 
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