On ERT And MERT-Rings

Zubayda M. Ibraheem

Dept. Of Mathematics,
College of Computer and Mathematical Sciences,
University of Mosul.

Received on: 26/6/2002 Accepted on: 1/9/2002

ABSTRACT

The main purpose of this paper is to study ERT and MERT rings, in order to study the connection between such rings and II-regular rings.
1- Introduction:
Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R-module. Recall that; 1- An ideal I of the ring R is essential if I has a non-zero intersection with every non-zero ideal of R; 2- A ring R is said to be \prod-regular if for every a in R there exist a positive integer n and b in R such that $a^n = a^n b a^n$ 3- A right R-module M is said to be GP-injective if, for any $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$ and any right R-homomorphism of $a^n R$ into M extends to one of R into M. 4- For any element a in R, $r(a), I(a)$ denote the right annihilator of a and the left annihilator of a, respectively.

2- ERT-R1NGS:
Following [3J, a ring R is said to be ERT-ring if every essential right ideal of R is a two-sided ideal.

Definition 2-1:
A ring R is said to be right weakly regular if for all a in R, there exists b in RaR such that $a = ab$, or equivalently every right ideal of R is idempotent.

We begin this section with the following main result:

Theorem 2.2:
If R is ERT-ring with every essential right ideal is idempotent, then R is weakly regular.

Proof:
For any $a \in R$, if RaR not essential, then there exists an ideal I such that $K = RaR \oplus I$ is essential then $K = K^2$.
In order to prove that K is weakly regular, we need to prove $RaR = (RaR)^2$.
For a $a \in K$, we have $a \in K^2$, that is $a \in (RaR \oplus I)^2$
Thus $a = (rar + i)(sas' + i')$ for some $r, r', s, s' \in R$ and $i, i' \in I$.
This implies that $a = (rar + i)sas' + (rar + i) i'$
\[= rar'as' + isas' + (rar' + i) i' \]
but \(isas' \in I \cap RaR = 0 \), also we have \((rar' + i)i' \in RaR \cap I = 0 \).
Therefore \(a = (rar')(isas') \in (RaR)^2 \), this implies that \(RaR \subseteq (RaR)^2 \) Thus \(RaR = (RaR)^2 \), this proves that \(R \) is weakly regular ring.

Following [2], the singular submodule of \(R \) is \(Y(R) = \{ y \in R, r(y) \) is essential right ideal of \(R \} \).

Theorem 2.3:
Let \(R \) be a semi-prime ERT right GP-injective ring. Then \(R \) is a right non singular.

Proof:
Let \(E \) be an essential right ideal of \(R \). Then \(E \) is a two-sided ideal, and hence \(l(E) \) is a two-sided ideal of \(R \).
Now \((l(E) \cap E)^2 \subseteq (E)E = 0 \).
Since \(R \) is semi-prime, then \(l(E) \cap E = 0 \), whence \(l(E) = 0 \). This proves that \(R \) is right non singular.

3- MERT-RINGS:
Following [3], a ring \(R \) is said to be MERT-ring if every maximal essential right ideal of \(R \) is a two-sided ideal.

Theorem 3.1:
Let \(R \) be an MERT-ring, if for any maximal right ideal \(A/\) of \(R \), and for any \(b \in M \), \(bR/bM \) is GP-injective, then \(R \) is strongly Pi-regular ring.

Proof:
Let \(b \) be a non-zero element in \(R \), we claim that \(b^n r + r(b^n) = R \).
If \(b^n r + r(b^n) \neq R \), let \(M \) be a maximal right ideal containing \(b^n r + r(b^n) \). Then \(M \) is essential right ideal of \(R \).
If \(bR = bM \), then \(b = bc \), for some \(c \) in \(M \), this implies \((1-c) \in r(b) \subseteq r(b^n) \subseteq M \), therefore \(1 \in M \), this contradics \(M \neq R \).
Now, since \(R/ M \cong bR/bM \). Then \(R/ M \) is GP-injective.

Now, define \(f: b^n R \to R/ M \) by \(f(b^n r) = r + M \), note that \(f \) is a well-defined \(R \)-homomorphism.

Since \(R/M \) is GP-injective, then there exists \(c \in R \), such that:

\[
I+M = f(b^n) = cb^n + M
\]

and so \((1-cb^n) \in M\), since \(b^n \in M\), and \(R \) is MERT-ring, this implies that \(M \) is a two-sided ideal, and hence \(c b^n \in M \).

Thus \(I \subseteq M \), a contradiction.

Therefore \(b^n R + r(b^n) = R \).

In particular \(l = b^n u + v; v \in r(b^n) \), \(u \in R \).

Thus \(b^n = b^{2n} u \) and therefore \(R \) is strongly \(\Pi \)-regular ring.

Theorem 3.2:

If \(R \) is MERT-ring with every simple singular right ideal is GP-injective, then \(Y(R) = 0 \).

Proof:

If \(Y(R) \neq 0 \), by Lemma (7) of [6], there exists \(0 \neq y \in Y(R) \) with \(y^2 = 0 \). Let \(L \) be a maximal right ideal of \(R \), set \(L = y R + r(y) \), we claim that \(L \) is essential right ideal of \(R \). Suppose this is not true, then there exists a non-zero ideal \(T \) of \(R \) such that \(L \cap T = (0) \). Then \(yRT \subseteq LT \subseteq L \cap T = 0 \) implies \(T \subseteq r(y) \subseteq L \), so \(L \cap T = (0) \). This contradiction proves that \(L \) is an essential right ideal, that is \(R/L \) is simple singular and hence \(R/L \) is GP-injective.

Now: Let \(f; yR \to R/L \) be defined by \(f(yr) = r + L \), then \(f \) is a well-defined \(R \)-homomorphism.

Since \(R/L \) is GP-injective, so \(\exists c \in R \), such that \(l + L = f(y) = cy + L \).

Hence \(l + L = cy + L \), implies that \(l - cy \in L \).

Since \(R \) is MERT, then \(ey \in L \) and thus \(l \in L \), a contradiction.

Therefore \(Y(R) = [0] \).

Following [1], a ring \(R \) is zero insertive (briefly ZI) if for \(a, b \in R \), \(ab = 0 \) implies \(aRb = 0 \).
Theorem 3.3:
Let R be a ZT ring. If every simple singular right-modules is GP-injective which is left self-injective, then R is strongly H-regular ring.

Proof:
Since R is simple singular GP-injective, then R is semi-prime, by Lemma (4) of [5]. Thus for any left ideal I, $L(I) \cap l = 0$.

Since R is simple singular GP-injective and ZI, then R is reduced and hence $r(a) = l(a)$ for any element a in R.

Thus $l(r(a)) \cap l(a) = l(l(a)) \cap l(a) = 0$.

Since R is left self-injective ring, then aR is a right annihilator, by Proposition (4) of [4].

Since $r(a) \subseteq r(a^n)$, then $a^nR = r(a^n)$.

Now, since $R = r(l(r(a))) + r(l(l(a)))$ then we have $R = r(l(r(a^n))) + r(l((a^n))) = r(a^n) + a^nR$.

In particular, for some b in R, and d in $r(a^n)$.

Thus $a^n = a^n b$.

Therefore R is strongly Π-regular.
REFERENCES