On Rings whose Simple Singular R-Modules are
GP-Injective

Zubayda M. Ibraheem
College of Computers Sciences and Mathematics
University of Mosul

Received on: 25/4/2004 Accepted on: 13/12/2004

ABSTRACT

In this work we give a characterization of rings whose simple singular right R-modules are Gp-injective. We prove that if R is a quasi-duo ring whose simple singular right R-modules are Gp-injective, then any reduced right ideal of R is a direct summand. We also consider that a zero commutative ring with every simple singular left R-module is Gp-injective.
1. Introduction:
Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R-modules. Recall that:
(1) A right R-module M is called general right principally injective (briefly right Gp-injective) if for any \(0 \neq a \in R\) there exists a positive integer \(n\), such that \(a^n \neq 0\) and any right R-homomorphism of \(a^n R\) into M extends to one of R into M;
(2) R is called reduced if R has no non-zero nilpotent elements;
(3) R is right (left) quasi-duo ring if every maximal right (left) ideal of R is an ideal of R;
(4) A ring R is called semi-prime if 0 is the only nilpotent ideal;
(5) for any element a in R we define a right annihilator of a by \(r(a) = \{x \in R : ax = 0\}\) and a left annihilator of a, \(l(a)\) is similarly defined.

2. Rings whose simple singular modules are GP-Injective:
In this section, we study rings whose simple singular right R-modules are Gp-injective.
We begin this section with the following result.

Proposition 2-1:
Let R be a quasi-duo ring, with every simple singular right R-modules is Gp-injective. Then any reduced right ideal of R is a direct summand.

Proof: Let \(I = aR\) be a reduced principal right ideal of R. We shall show that \(aR + r(a) = R\). If not, there exists a maximal right ideal \(M\) of R such that \(aR + r(a) \subseteq M\). Now, \(M\) is essential right ideal of R, if not, then there exists a non-zero right ideal \(L\) of R such that \(ML = 0\). Then \(aRL \subseteq ML \subseteq M\), implies that \(L \subseteq r(a) \subseteq M\), so \(ML = L = 0\), and this is a contradiction.

So \(M\) must be essential right ideal of R. Therefore \(R/M\) is Gp-injective. Then there exists a positive integer \(n\) such that any R-homomorphism of \(a^n R\) into \(R/M\) extends to one of R into \(R/M\). Let \(f : a^n R \rightarrow R/M\) be defined by \(f(a^n r) = r + M\). \(f\) is a well-defined R-homomorphism. Indeed, let \(r_1, r_2 \in R\) such that \(a^n r_1 = a^n r_2\). Then \(a^n (r_1 - r_2) = 0\), implies that \(a^n (r_1 - r_2) = 0\), so \(r_1 - r_2 \in r(a^n)\), since I is reduced. Therefore \(r(a^n) = r(a)\), this implies that \(r_1 - r_2 \in r(a) \subseteq M\). Hence, \(r_1 + M = r_2 + M\). Now \(R/M\) is Gp-injective, so there exists \(c \in R\) such that \(1 + M = f(a^n) = ca^n + M\). Hence, \(1 - ca^n \in M\), since \(a^n \in M\) and R is a quasi-duo ring, then \(ca^n \in M\) and so \(1 \in M\). This contradicts \(M \neq R\).

Therefore \(aR + r(a) = R\). In particular \(ar + c = 1\), for some \(r \in R\) and \(c \in r(a)\), whence \(a^2 r = a\). If we set \(d = ar^2 \in I\), then \(a = a^2 d\). Clearly \((a - ada)^2 = 0\), since I is reduced, thus \(a = ada\), and hence \(I = eR\), where \(e = ad\) is an idempotent element. Thus I is a direct summand.
Proposition 2-2:

Let R be a semi-prime ring with every simple singular right R-module is Gp-injective. Then every right ideal of R is an idempotent.

Proof: For any right ideal I of R, suppose there exists an element b in I, such that $b \notin I^2$. Then $bR \neq (bR)^2$. Since R is a semi-prime ring, then $(bR)^2$ is essential in bR. By Zorn’s lemma, the set of right ideals J such that $(bR)^2 \subseteq J \subseteq bR$ has a maximal member L. Then bR/L is a simple singular, and therefore is Gp-injective. Now, let $f: bR \rightarrow bR/L$ is the canonical homomorphism defined by $f(br) = br + L$ for all ring R, since bR/L is Gp-injective, so there exists $c \in R$, such that $f(br) = (bc + L)br$. Then $f(b) = (bc + L)b = b + L$, which implies that $b + L = bc + L$. Hence, $b - bc \notin L$, whence it follows that $b \in L$. Thus $bR \subseteq L$ and this is a contradiction. Therefore $I = I^2$.

3-Zero Commutative Rings

In this section we introduce the notion of a zero commutative ring in order to study the connection between rings whose simple singular right R-modules are Gp-injective and other rings.

Definition 3-1:

A ring R is called zero commutative (briefly ZC) if for $a, b \in R$, $ab = 0$ if $ba = 0$.

We shall begin this section with the following result.

Lemma 3-2:

Let R be a ZC ring. Then $RaR + l(a)$ is an essential left ideal of R.

Proof: Given $a \in R$, assume that $[RaR + l(a)]l = 0$, where I is a right ideal of R. Then $al \subseteq I$ $RaR = 0$, so $l \subseteq r(a) \subseteq l(a)$. Hence, $I = 0$; where $RaR + l(a)$ is an essential left ideal of R.

Lemma 3-3:

Let R be a ZC ring with every simple singular left R-module is Gp-injective, then R is reduced.

Proof: Let $a^2 = 0$. Suppose that $a \neq 0$. By lemma (3-2), $I(a)$ is an essential left ideal of R, since $a \neq 0$, $l(a) \neq R$. Thus, there exists a maximal essential left ideal M of R containing $l(a)$, therefore R/M is Gp-injective. So any R-homomorphism of Ra into R/M extends to one of R into R/M. Let $f: Ra \rightarrow R/M$ be defined by $f(ra) = r + M$. Clearly, f is a well-defined R-
homomorphism. Thus \(1+M = f(a) = ac+M \). Hence, \(1-ac \in M \) and so \(1 \in M \), which is a contradiction. Hence \(a=0 \), and so \(R \) is reduced.

Definition 3-4:
A ring \(R \) is said to be right weakly regular if for all \(a \in R \), there exists \(b \in RaR \) such that \(a=ab \).

Now, we give the main result.

Proposition 3-5:
If \(R \) is ZC and every simple singular left \(R \)-module is Gp-injective, then \(R \) is a reduced weakly regular ring.

Proof: By Lemma (3-3), \(R \) is a reduced ring. We shall show that \(RaR+l(a)=R \) for any \(a \in R \). Suppose that there exists \(b \in R \) such that \(RbR+l(b) \neq R \). Then there exists a maximal left ideal \(M \) of \(R \) containing \(RbR+l(b) \). By Lemma (3-2), \(M \) must be essential in \(R \). Therefore \(R/M \) is Gp-injective. So there exists a positive integer \(n \) such that any \(R \)-homomorphism of \(Rb^n \) into \(R/M \) extends to one of \(R \) into \(R/M \). Let \(f:Rb^n \rightarrow R/M \) be defined by \(f(rb^n)=r+M \). Since \(R \) is a reduced ring, \(f \) is a well-\(R \)-homomorphism. Now, \(R/M \) is Gp-injective, so there exists \(c \in R \) such that \(1+M = f(b^n) = b^n c + M \). Hence \(1-b^n c \in M \) and so \(1 \in M \), which is a contradiction. Therefore \(RaR+l(a)=R \) for any \(a \in R \). Hence \(R \) is a left weakly regular ring. Since \(R \) is reduced, then \(RaR+r(a)=R \), implies that \(R \) is a right weakly regular ring. Therefore \(R \) is a weakly regular ring.

Kim and Nam in [2] proved that. Rings whose simple right \(R \)-modules are Gp-injective are always semi-prime. But in general rings whose simple singular right \(R \)-modules are Gp-injective need not be semi-prime.

Proposition 3-6:
Let \(R \) be a ZC ring, and every simple singular left \(R \)-module is Gp-injective, then \(R \) is a semi-prime ring.

Proof: From Lemma (3-3), \(R \) is a reduced ring and then \(R \) is a semi-prime ring.

REFERENCES

